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Abstract

Studies on ultrafine particles and air quality have mostly focused on vehicle exhaust
emissions and on new particle formation in “clean” ambient air. Here we present
a study of the processes contributing to ultrafine particle concentrations in an urban
coastal area (Huelva, SW Spain) where significant anthropogenic emissions of aerosol5

precursors occur. The overall data analysis shows that two processes predominantly
contribute to the number of particles coarser than 2.5 nm: vehicle exhaust emissions
and new particle formation due to photo-chemical activity. As typically occurs in urban
areas, vehicle exhaust emissions result in high concentrations of black carbon (BC)
and particles coarser than 2.5 nm (N) during the morning rush hours. The highest N10

concentrations were recorded during the 11–17 h period, under the sea breeze regime,
when photochemical activity resulted in high O3 levels and new particle formation in the
aerosol precursors’ rich inland airflow. In this period, it is estimated that about 80% of
the number of particles are linked to sulfur dioxide emissions. The contributions to N of
“carbonaceous material and those compounds nucleating/condensing immediately af-15

ter emission” and of the “new particle formation processes in air masses rich gaseous
precursors (e.g. SO2)” were estimated by means of a relatively novel method based
on simultaneous measurements of BC and N. A comparison with two recent studies
suggests that the daily cycles of “new particle formation” during the period when the
inland sea breeze is blowing period seem to be a feature of ultrafine particles in coastal20

areas of South-west Europe.

1 Introduction

Urban air quality impairment by atmospheric nano-sized particles is becoming a topic
of great interest in the atmospheric and environmental sciences. A growing volume
of scientific evidences shows that exposure to ultrafine particles (diameter <100 nm)25

results in harmful effects on human health (Araujo and Nel, 2009). Because deposition
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in the respiratory system of inhaled ultrafine particles is governed by diffusional pro-
cesses, it is believed that ultrafine particle translocation within the human body is
dependent on particle size, in such a way that the smallest ultrafine particles (e.g.
<5 nm) mostly deposit in the nasopharyngeal region, whereas larger ultrafine particles
(≥20 nm) mostly reach the alveoli and enter the bloodstream (ICRP, 1994; Oberdörster5

et al., 2004). Many medical studies are currently focusing on translocation and the
effects of solid ultrafine particles (rather than on liquid or semi-volatile aerosols). In
a study with rats, Oberdörster et al. (2004) demonstrated that inhaled solid ultrafine
particles deposited on the olfactory mucosa reach the central nervous system via the
olfactory nerve. Translocation of inhaled ultrafine particles from the lungs to the liver10

and accumulation in the liver has been documented as occurring in a matter of a few
hours (Oberdörster et al., 2002). Recent laboratory studies have elucidated the mech-
anism by which exposure to ultrafine particles enhances atherosclerosis and cardio-
vascular ischemic events (Araujo et al., 2008). This may account for the association
between “ambient particulate matter pollution” and “increased morbidity and mortality15

due to cardiovascular diseases” observed in epidemiological studies (Analitis et al.,
2006). Chemical composition is also relevant; some ultrafine particles are constituted
by potentially carcinogenic compounds (such as PAHs linked to soot; Morawska and
Zhang, 2002). Given that these adverse effects on human health and because ultrafine
particles are not properly quantified in terms of PM10 and PM2.5 (the current metrics in20

air quality standards), there is open debate on the necessity to regulate concentrations
of ultrafine particles in ambient air (Second Position Paper on PM, 2004; COST 633
Report, 2009).

Ultrafine particles typically account for 85% of the total particle number concentration
in urban air (Wehner and Wiedensohler, 2003; Rodŕıguez et al., 2007; Mej́ıa et al.,25

2008). For this reason, many studies on ultrafine particles in urban air have been based
on measurements of total number concentrations of particles coarser than 10 nm (e.g.,
Harrison and Jones, 2005) or 3 nm (e.g., Shi et al., 1999). Most studies attribute two
main origins to these urban particles (e.g., Dunn et al., 2004; Morawska et al., 2008):
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– Primary vehicle exhaust emissions. These particles show bimodal size distribu-
tion, with a nucleation (<30 nm) and a soot mode (50–100 nm). The nucleation
mode is attributed to binary H2O-H2SO4 nucleation and subsequent growth by
condensation of sulfuric acid and/or hydrocarbons during the dilution and cooling
of the exhaust emissions (Burtscher, 2005; Arnold et al., 2006). A fraction of the5

nucleation mode material is semi-volatile and its formation rate depends on the
dilution conditions and the temperature and relative humidity of the ambient air
(Casati et al., 2007). The soot mode is made up of elemental carbon, absorbed
organic material and some other trace elements formed in the engine and directly
emitted in the solid phase (Burtscher, 2005; Rose et al., 2006).10

– New particle formation in ambient air. This process is generally linked to nucle-
ation and subsequent cluster/particle growth by condensation of photo-oxidized
vapors (Morawska et al., 2008; Dunn et al., 2004). The cluster activation the-
ory proposes that new particle formation occurs in two (not necessarily coupled)
steps (Kulmala and Kerminen, 2008): i) nucleation of an initial cluster (the nucle-15

ation process itself), and ii) activation of these clusters resulting in particle growth
to a detectable diameter (≥2.5 nm, according to the technology currently avail-
able). It has been observed that the clusters necessary for the initial steps seem
to be always present in the atmosphere (Kulmala et al., 2005) and that nucleation
of sulfuric acid gas molecules plays a key role in the formation of such stable20

clusters (0.5–1.5 nm size; Kulmala et al., 2006). Thus, the so-called new particle
formation would occur when these clusters are activated and grow to detectable
sizes (≥2.5 nm). It is believed that species involved in the nucleation step might
not necessarily be the same as those involved in cluster/particle growth by con-
densation, and that nucleation (of clusters) and growth could be decoupled steps25

(Kulmala and Kerminen, 2008).
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Our knowledge of ultrafine particles and urban air quality has experienced a signifi-
cant increase in the last decade. However, some issues require more in-depth investi-
gation. Some examples:

– Most studies have focused on vehicle exhaust emissions and on new particle for-
mation in ambient air (e.g. references above). However, the contribution of other5

types of emission sources, such as plumes of particle precursors (e.g. industrial,
ships, etc.), to ultrafine particle concentrations in ambient air has not been inves-
tigated in depth, even though it is well known that these activities may release
important gaseous precursors. For example, Stanier et al. (2004) observed that
nucleation was associated with the presence of SO2 and with radiation intensity.10

– The influence of meteorology and the dispersion conditions of such aerosol pre-
cursor plumes on ultrafine particle formation in ambient air requires more in-depth
investigation. In contrast, ultrafine particle formation during the cooling of vehicle
exhaust emissions and their dilution and transport from a canyon street to the
urban background has been widely studied (e.g., Wehner et al., 2002). Previous15

studies have shown that the development of coastal breezes in Southern Europe
exerts a strong influence on the formation of ozone and secondary particles on
a regional level (Millán et al., 2002; Rodŕıguez et al., 2004); however the influence
of this meteorological scenario on the formation of ultrafine particles is unknown.

– There is a lack of techniques/methodologies for quantifying the sources and20

processes contributing to ultrafine particle concentrations in urban ambient air.
A few attempts have been made. By applying receptor modeling techniques to
a database of daily average values of PM2.5 chemical composition and particle
size distribution, Pey et al. (2009) concluded that “vehicle exhaust emissions”
and “new particle formation in ambient air” accounted for 65% and 24% of the25

10–100 nm particles, respectively in Barcelona. By using 10-min average data
of black carbon and number of particles concentrations, Rodŕıguez and Cuevas
(2007) estimated that ultrafine particles in Santa Cruz de Tenerife city mostly
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came from vehicle exhaust emissions during the morning rush hours, whereas
about 70% of these ultrafine particles were linked to new particle formation in
ambient air during the afternoon.

In this paper we present a study of ultrafine particles and industrial emissions of
gaseous precursors. The objective is to identify the sources and processes contributing5

to ultrafine particle concentrations in ambient air downwind of coastal industrial emis-
sions. The results show that these emissions coupled with suitable meteorological
conditions typical of coastal areas give rise to high concentrations of ultrafine particles.
These results show that “non-vehicle exhaust emission” sources may also contribute
significantly to ultrafine particles in urban ambient air.10

2 Methodology

2.1 Study area

The city of Huelva (around 140 000 inhabitants) is located in the south-western part of
the autonomous region of Andalusia in Spain (Fig. 1). The city spreads out over a flat
area in the southern end of the “V”-shaped confluence between the Odiel and Tinto15

rivers. The city is surrounded by a ring road that allows road-traffic to connect the city
with motorways (Fig. 1).

In addition to the typical urban vehicle exhaust emissions, aerosol precursors are
emitted at the south of the city. These emissions are related to industrial activi-
ties (in Punta del Sebo and Nuevo Puerto industrial areas; Fig. 1) and to maritime20

transport (ship). According to the European Pollution Emission Register (EPER; http:
//eper.ec.europa.eu/eper/) and to previous field studies (Querol et al., 2002; Alastuey
et al., 2006; Sánchez de la Campa et al., 2008; Fernández-Camacho, 2010), the most
significant industrial activities in Punta del Sebo include: (i) a Cu-smelter plant whose
SO2, H2SO4, As, Sb, Pb, Zn and Sn emissions are well documented, and (ii) phospho-25

ric acid production plants, which are a source of atmospheric NH+
4 and Na phosphate,
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phosphoric acid, sulfuric acid and sodium silicate. Special attention is paid to the
Cu-smelter plant, given that it is a very significant source of SO2 and heavy metals
(Fernández-Camacho et al., 2010). According to the above information sources, the
most significant air pollutant emissions in Nuevo Puerto occur in a crude oil refinery
resulting in emissions of volatile hydrocarbons, SO2, NOx, NH3, Ni, V and particulate5

matter. Finally, ship emissions may occur in the harbor and in the bay of Huelva. This
is a transit region for ships sailing to/from the Strait of Gibraltar, which ∼80 000 ships
pass through every year (Viana et al., 2009). In all these cases sea-to-land winds result
in the inland transport of aerosols and their precursors (e.g. SO2).

The dispersion and transport of air pollutants in this area are highly influenced by the10

topographic setting (Mantilla, 2007). At night, the wind mostly blows from the north,
associated with the channeling of airflows along the Guadalquivir basin, prompted by
the synoptic Azores anticyclone. During daylight, southern airflows linked to thermally
driven breezes predominate. In this period, the inland entry of coastal breeze coupled
with the airflow channeled along the river pathway, favor the entry of industrial plumes15

from the Punta del Sebo and Nuevo Puerto areas to the city centre. This sea breeze
blowing inland is typically associated with an increase in ozone concentrations (Millán
et al., 2002).

2.2 Measurements

Data on particle number, black carbon and PM10 concentrations, gaseous pollutant20

concentrations (NOx, SO2 and O3, among others) and meteorological parameters were
collected at the urban background air pollution research station located at the Univer-
sity Campus. This site is situated on the northeast side of the city, 7 km from Punta
del Sebo and 14 km from Nuevo Puerto industrial areas. The closest roads, Avenida
Andalucia and Avenida Fuerzas Armadas lie about 500 and 1000 m to the west and25

the east of the measurement site, respectively (Fig. 1). The current study is based on
data collected between April 2008 and September 2009.
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2.2.1 Particles

Number concentration of particles coarser than 2.5 nanometers (N) was monitored by
using an Ultrafine Condensation Particle Counter (UCPC, TSI™, model 3776). The
instrument records average data at 1-min intervals when operating in high flow mode
(1.5 l/m) to minimize diffusion losses. N is considered representative of the ultrafine5

particle concentration. This is supported by previous studies that showed that the
number of particles with size 10–100 nm typically accounts for 85% of the total number
concentrations in urban air (Wehner and Wiedensohler, 2003; Rodŕıguez et al., 2007).

Concentrations of black carbon particles (BC) smaller than 10 µm were monitored by
placing a PM10 impactor in the inlet of a Multi-Angle Absorption Photometer (MAAP)10

(Thermo™, model Carusso 5012). BC concentrations were determined using the ab-
sorption coefficient measurements at λ=630 nm (σap in M m−1 units) taken with the
MAAP by applying Eq. (1) (Petzold and Schönlinner, 2004):

BC(µg ·m−3)=σap(Mm−1)/σ(m2·g−1) (1)

where σ is the “specific aerosol absorption coefficient” (expressed in m2/g units). In15

order to determine “σ”, samples of PM10 particles were collected in a high volume
(68 m3/h) sampler. In these PM10 samples, elemental carbon (EC) concentrations
were determined by analysis in the laboratory. These were performed by means of the
Thermo Optical Transmittance technique (Birch and Cary, 1996) using a Sunset Labo-
ratory™ OC-EC analyzer and the default temperature steps of the EUSAAR2 program.20

A parallel PM2.5 sampling was occasionally performed to determine the PM2.5/PM10
ratio for BC.

Concentrations of PM10 particles were determined by means of a beta attenuation
monitor and a sampler for collecting PM10 samples on filter media. Daily average
gravimetric PM10 concentrations were determined by filter weighing after conditioning25

(20 ◦C and 50% RH). Gravimetric equivalent hourly average PM10 concentrations were
determined by multiplying the PM10 readings of the beta monitor by the “correction
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factor” required to take into account losses due to volatilization in the beta instrument.
This was done by following the EU standardized procedure (EC Working Group on
Particulate Matter Report, 2002).

2.2.2 Additional data

The following complementary measurements were performed: (i) concentrations of5

SO2, NOx and O3 were monitored using standard procedures following the reference
methods of the European air quality directives, (ii) road-traffic intensity (number of ve-
hicles hour−1) was measured on the two main roads at each side of the measurement
site, (iii) meteorological parameters (wind speed and direction, temperature, relative
humidity, pressure and global radiation).10

3 Results and discussion

3.1 Absorbing aerosols

The specific aerosol absorption coefficient σ (expressed in m2/g units) was determined
by comparing the absorption coefficient σap measured by the MAAP with the elemen-
tal carbon (EC) concentrations determined by the Sunset analysis of the PM10 sam-15

ples. An average value of σ=10.31±0.25 m2/g was obtained (Fig. 2a). This σ value is
within the range of those typically observed in previous studies (2–25 m2·g−1; Bond and
Bergstrom, 2006). Because of the low σ values typically associated with other poten-
tially absorbing species, such as mineral dust (0.01–0.02 m2·g−1; Alfaro et al., 2004) or
organic aerosols (e.g. humic-like substances σ∼0.03 m2·g−1; Hoffer et al., 2006), and20

because of the high correlation observed between absorption coefficient and nitrogen
oxides during the morning rush hours (Fig. 3b, discussed below), we assume that the
measured absorption coefficient is entirely due to absorption by EC. Observe in Fig. 2b
that about the 75% of the EC mass in PM10 occurs in the fine (PM2.5) fraction.
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3.2 Regular daily evolution

Figure 3 shows the hourly average values for particle number N and black carbon BC
concentrations, several gaseous pollutants (NOx and SO2) and the road-traffic intensity
for each day of the week. The high correlation between BC, NOx and “road-traffic inten-
sity/wind speed” ratio (all of them showing high values during the morning rush hours of5

working days) indicates that a predominant fraction of these pollutants is linked to vehi-
cle exhaust emissions. This is also evidenced in the working-days-to-weekend change
in the BC and NOx daily evolution. The daily evolution of N is somewhat different to that
of BC. The abrupt morning increase in road-traffic intensity and in N evidence the sig-
nificant influence of vehicle exhaust emissions on the ultrafine particle concentrations10

in this period. In contrast, the decrease observed in the “road-traffic intensity/wind
speed” ratio and in BC and NOx concentrations after the morning rush hours (Fig. 3b
and c) is not observed in N. This suggests that other sources (not linked to BC and NOx
emissions) and/or processes are actively contributing to N during the central hours of
daylight. The correlation between the daily evolution of the N/BC ratio, SO2 and solar15

radiation suggests that this additional mechanism providing ultrafine particles during
the noon-afternoon period may be related to new particle formation in the SO2 down-
wind of the industrial plumes that reach the measurement area during the period when
the sea breeze is blowing inland (Fig. 3d).

The mean value of the ≥2.5 nm particle number concentrations recorded in Huelva20

is (∼22 000 cm−3) within the range of those typically recorded in other urban back-
ground sites (∼20 000 cm−3 in Santa Cruz de Tenerife city and ∼22 000 cm−3 in Pitts-
burg for ∼3 nm particles; Rodŕıguez and Cuevas, 2007; Stanier et al., 2004) and much
lower than those recorded in street canyons and road-traffic sites (∼64 000 cm−3 in
Leipzig and 170 000 cm−3 in Birmingham for ≥3 nm particles; Wehner et al., 2002; Shi25

et al., 1999). One of the most important features of the ≥2.5 nm particles in Huelva
is their regular daily evolution. In most urban areas, the number of ≥3 nm particles
reaches a maximum mostly during the morning rush hours (e.g., Leipzig, Santa Cruz
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de Tenerife) due to vehicle exhaust emissions. In contrast, the maximum concentra-
tions of ≥2.5 nm particles in Huelva are reached during the afternoon (12–14 h).

3.3 Relationship between particle number and black carbon concentrations

Correlations between particle number and black carbon concentrations are regularly
observed in urban air due to vehicle exhaust emissions (Fruin et al., 2004; Rodŕıguez5

et al., 2007; Rodŕıguez and Cuevas, 2007). These correlations are also observed in
Huelva.

We have analyzed the relationship between the particle number N and black car-
bon BC concentrations following the methodology described by Rodŕıguez and Cuevas
(2007). Figure 4 shows the N versus BC scatter plots for different periods of the day10

(0–23 h, 6–9 h, 10–15 h and 18–23 h). It can be observed that at any period, the N
versus BC data set is grouped between two well defined borders with slopes S1 and
S2, representing the minimum and maximum N/BC ratios, respectively (Fig. 4a). Table
1 shows the values of slopes S1 and S2 obtained in different periods of the day. Dur-
ing the NOx morning peak period (6–9 h), S1 showed a value of 6.9·106 particles per15

nanogram of black carbon (particles/ng BC) and it is interpreted as the minimum num-
ber of particles formed/emitted per each nanogram of BC emitted by vehicle exhausts.
In this period, S2 showed a value of 148·106 particles/ng BC. Increases in the N/BC
ratio, from S1=6.9·106 particles/ng BC up to S2=148·106 particles/ng BC as maximum
value, are interpreted to be caused by enhancements in the new particle formation20

processes during the dilution and cooling of the vehicle exhaust emissions and/or in
ambient air (Casati et al., 2007; Gidhagen et al., 2005). During the evening NOx peak
period (18–23 h), S1 and S2 show values close to those observed during the morning
NOx peak hours (Table 1). From mid-morning to the afternoon period (10–15 h), S1
showed a value of 66·106 particles/ng BC, which is an order of magnitude higher than25

that observed during the morning rush hours. This much higher number of particles
per each nanogram of BC in the ambient air is attributed to the activation of an addi-
tional new particle formation mechanism (not linked to primary BC emissions). This is
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supported by the fact that the S1 slope is not as well defined during the 10–15 h period
as during the morning NOx peak period (6–9 h).

The S1 value found during the morning NOx peak in Huelva city (6.9·106 particles
(>2.5 nm)/ng BC) is close to those observed in other cities: 4.94×106 particles
(>3 nm)/ng BC in Santa Cruz de Tenerife, 4.69·106 particles (>10 nm)/ng BC in5

Barcelona and 4.75·106 particles (>10 nm)/ng BC in Milan (Rodŕıguez and Cuevas,
2007). In Huelva the S2 slope is much higher than that observed in other cities, for
example S2 in the mid-morning to afternoon period is equal to 47×106 particles/ng BC
in Santa Cruz de Tenerife and 356×106 particles/ng BC in Huelva. This indicates “high
new particle formation” activity in Huelva from mid-morning to afternoon. In fact, the10

N/BC ratios in Huelva (50–150×106 particles/ng BC; Fig. 3d) are much higher than
those observed in other cities such as Santa Cruz de Tenerife and Barcelona (15–
25×106 particles/ng BC; Rodŕıguez et al., 2008; Pérez et al., 2010).

3.4 Sources of ultrafine particles

3.4.1 Components of ultrafine particles15

In order to identify the sources and processes affecting ultrafine particle concentration,
N was split in two components following the methodology of Rodŕıguez and Cuevas
(2007):

N1 = S1 ·BC (2)

N2 = N−N1 (3)20

where, according to the results shown in the previous section, a value of
S1=6.9×106 particles/ng BC (the N-vs-BC slope during the morning NOx) was chosen.
Rodŕıguez and Cuevas interpreted N1 as representative of “those components directly
emitted in the particle phase” and “those compounds nucleating immediately after the
vehicle exhaust emission” (because they are in the aerosol phase under regular am-25

bient air conditions). Thus, N1 accounts for incomplete fuel combustion products (e.g.
17764
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black carbon, long-chain organic matter compounds or PAH), condensed trace metals,
unburned oil and a fraction of sulphate and organic compounds nucleating/condensing
immediately after emission (as described by Kittelson, 1998; Burtscher, 2005; Arnold
et al., 2006; Rose et al., 2006). The component N2 is related to those processes giv-
ing rise to the aforementioned increases in the N/BC ratio, i.e. enhancement in the new5

particle formation rates due to increased nucleation and/or growth rates to detectable
sizes (≥2.5 nm). Rodŕıguez and Cuevas reasoned that this enhancement in the new
particle formation rates may occur in different contexts, such as “during the dilution and
cooling of the vehicle exhaust emissions” (e.g. as described by Charron and Harrison,
2003; Casati et al., 2007) or in ambient air due to photochemistry (e.g. as described10

by Woo et al., 2001; Wehner et al., 2002). Thus, this is a very useful method that
provides an estimation of the fraction of the total number concentration that is linked
to the “carbonaceous solid phase” (although N1 may include a fraction of compounds
nucleating immediately after emission) and of the fraction that is linked to “nucleation
mode particles”. Figure 5 shows the hourly average values of N1 and N2 for every day15

of the week; these results will be discussed below.

3.4.2 Identification of sources

In order to identify the sources and processes affecting particle number N concentra-
tion, a set of Principal Component Analyses (PCA) followed by varimax rotations were
performed using 1-h average data. Because the principal components (PC) obtained20

depend on the number and types of variables introduced in the PCA, a number of
tests were performed. Initially, only particles (N1, N2 and PM10) and primary gaseous
pollutants (NOx and SO2) were introduced. In a second step, different combinations
of meteorological parameters, “road-traffic intensity/wind speed” ratio and ozone were
chosen. Moreover, PCA were performed separately with the data collected during the25

morning rush hours (6–9 h) and during the noon-afternoon period (11–17 h). Winter
and summer periods were also segregated. Thus, about 40 PCAs were performed. For
the sake of brevity, only four examples are shown (Table 2). Two PC were persistently
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observed in the morning (Table 2):

– a principal component 1 (PC-1) positively correlated with N1, NOx, PM10 and
the “road-traffic intensity/wind speed” ratio was observed. This profile supports
the interpretation of the N1 origin described above: mostly carbonaceous mate-
rial directly emitted in the particle phase and compounds nucleating/condensing5

immediately after the emission (Rose et al., 2006). Thus, this PC represents
a fraction of the particles emitted by vehicle exhausts (mostly the solid phase).
Observe in Fig. 7b and f that N1 and NOx reach their highest concentrations dur-
ing the morning and evening rush hours. These exhaust emissions and road-dust
resuspension account for the PM10 association in this PC.10

– PC-2 is positively correlated with N2 and SO2. This association supports the
interpretation of the N2 origin described above: new particle formation by nucle-
ation and rapid particle growth to a detectable size (≥2.5 nm; Arnold et al., 2006).
These SO2 emissions in the morning (when this pollutant typically shows rela-
tively low concentrations, 3–10 µg/m3) are attributed to vehicle exhaust emissions15

(light and heavy duty engines). The fact that high N2 and SO2 concentrations
are observed when the wind blows from the north (as in the case of N1 and
NOx; Fig. 6A1 and B1), indicates the influence of exhaust emissions from vehi-
cles running along the northern side of the ring road around Huelva city (Figs. 1
and 6c1,d1). Observe in Fig. 7c that the N2 maximum in the morning is only20

observed in winter. The fact that solar radiation is also correlated with this fac-
tor suggests that SO2 photo-oxidation during transport from the road (where the
emission takes place) to our background measurement site may enhance new
particle formation rates (Pirjola, 1999).

Because the industrial areas and harbor are located (7–14 km) to the south of Huelva25

city (Fig. 1), the northward inland breeze blowing during the afternoon favors the inland
transport of the SO2 plumes over the city and the mixing of urban and industrial pollu-
tants. These fumigations and the results of the PCA showed some differences between
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summer and winter owing to differences in the sea breeze dynamic between the two
seasons. In wintertime, the change in wind direction from NNE at night to S during
the afternoon occurred via the east (clockwise; Fig. 7a). This resulted in frequent fumi-
gations of the plumes (from industrial and maritime ship activities) over the city, giving
rise to high SO2 concentrations during the 11–17 h period (Fig. 7c). In summer, the5

night (NW) to afternoon (SW) change in wind direction occurred via the west (coun-
terclockwise) and consequently the plumes were very frequently transported westward
without impacting on the city. For this reason, the afternoon SO2 concentrations were
lower in summer than in winter (Fig. 7c and g). The highest SO2 concentrations were
recorded when the wind blew from the SSW (∼185◦), where the Cu-smelter and refin-10

ery plants are located (Fig. 6C2 and C3). In the PCA performed during the 11–17 h
period (Table 2):

– the influence of the SO2 plumes is observed in the PC-1 both in winter and sum-
mer. In wintertime it seems to be mixed with light-absorbing particles (N1) and
NOx, both associated with combustion emissions. This mixing may occur during15

the northward inland transport of the SO2 plumes over the city conurbation,

– the association between N1 and the “number of vehicles/wind speed” ratio, which
corresponds to fresh vehicle exhaust emissions of “light-absorbing carbonaceous
and immediately nucleating aerosols”, is observed in PC-3 in winter and in PC-2
in summer. In winter, high N1 and NOx concentrations are observed when the20

wind blew from the NE (during the NNE to S wind turn described above; Fig. 6A3
and B3), where a turn-off into the city from the motorway is located,

– an O3-rich sea breeze blowing inland (Millán et al., 2002) is observed in PC-2 in
winter and in PC-3 in summer. In this warm season this inland transport of ozone
also resulted in the transport of N1 particles and NOx from the city center to the25

measurement site (Fig. 6A2 and B2),

– nucleation of sulphate is clearly observed in summer in PC1.
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In order to quantify the relationship between “N1 and N2” and “NOx and SO2”, the
analysis shown in Fig. 8 was performed. The use of data averaged in intervals of
25 µg NOx/m3 (0–25, 25–50, . . . ) and 1 µg SO2/m3 (0–1, 1–2, . . . ) in Fig. 8, allows
variability due to other influencing parameters to be reduced. Observe that N1 showed
high linearity with NOx (Fig. 8a and e) but not with SO2 (Fig. 8b and f). Similarly, N25

did not show correlation with NOx (Fig. 8c and g), but exhibited high linearity with SO2
(Fig. 8d and h). The fact that no correlation between N2 and SO2 is observed during
the summer morning is attributed to the influence of temperature on the condensation
processes that result in cluster growth to detectable sizes, ≥2.5 nm (Gidhagen et al.,
2005; Casati et al., 2007). This is supported by the fact that the N2 versus SO2 slope10

for the period 6–9 h showed a decreasing trend with temperature (slope=3258 for T :
0.0–3.5 ◦C, 2874 for T : 3.5–4.5 ◦C, 857 for T : 4.5–5.5 ◦C), and no correlation between
N2 and SO2 was observed for temperatures >6 ◦C. Observe that N2 showed a morning
maximum (linked to vehicle exhaust emissions) in winter (Fig. 7c) but not in summer
(Fig. 7g). The fact that the correlation between N2 and SO2 is observed from low to high15

SO2 concentrations, suggests that N2 is predominantly influenced by the SO2 plume
dispersion scenarios (Fig. 8d and h). Similarly, N1 is dominated by vehicle exhaust
products (Fig. 8a and e).

3.5 Contributions to ultrafine particle concentrations

Figure 5 shows the hourly average values of N1, N2, NOx, SO2 and O3 concentrations20

and of wind speed for every day of the week. Table 3 shows the average values of
N and the contributions of N1 and N2. The highest N1 concentrations were recorded
during the morning rush hours on working days, when ultrafine particles (N) are mostly
attributed to vehicle exhaust emissions. In this period, when N showed an average
value of ∼27 000 cm−3, the contributions of N1 and N2 accounted for 35% and 65% of25

N, respectively.
The weekly evolution of N2 is significantly different to that of N1. High N2 concentra-

tions are observed during the period when the sea breeze is blowing inland. Observe
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that the increase in N2 concentrations (from 11 h) is correlated with the increase in
wind speed and in SO2 and O3 concentrations (Fig. 5c). The parallel between N2 and
solar radiation suggests the active role of SO2 photo-oxidation in new particle formation
during the inland transport of SO2 plumes (Fig. 7c and g). During this 11–17 h period,
when N typically shows values of ∼39 000 cm−3, N2 accounted for 80% of N.5

In order to quantify the contributions of N1 and N2 to N, data were classified from
the highest to lowest values of N (100th to 1st percentile). The contributions of N1
and N2 to N are highlighted in black and grey, respectively (Fig. 9a and e). It can
clearly be observed that increasing N concentrations are associated with much higher
increases in N2 than in N1 concentrations (Fig. 9a and d). Thus, during N2 events10

representing the 80th percentile, N1 only accounted for about 20% of N during the
morning rush hours and for 10% of N during the 11–17 h period (Figures 9b and e).
The fact that ultrafine particles may reach higher concentrations during the 11–17 h
period (up to 130 000 cm−3) than during the morning (up to 90 000 cm−3) is prompted
by the much higher contributions of N2. Figure 9c and f show the SO2 concentrations15

associated with each N value plotted in Fig. 9a and d. These results evidence the
important involvement of the SO2 emissions in the ultrafine particle pollution several
(7–14) kilometers downwind. Observe in Fig. 9c and f that increasing N values from
the 1st to 100th percentile are associated with increasing SO2 concentrations from 10
to 20 µg/m3 in the morning and from about 5 to 50 µg/m3 in the 11–17 h period. This20

increasing trend with ultrafine particles was not observed in NOx (not shown).

4 Summary and conclusions

Most studies on ultrafine particles and air quality have focused on vehicle exhaust emis-
sions and on new particle formation in ambient air mostly under “clean air” conditions.
In this article we have presented a study of the processes influencing ultrafine particle25

concentrations in an urban coastal area where significant emissions of gaseous parti-
cle precursors take place (Huelva, SW Spain). These emissions are linked to industrial
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activities and secondarily to maritime transport activities (ships). The study is based
on measurements of the number of particles coarser than 2.5 nm (N), particulate black
carbon (BC), gaseous pollutants and meteorological parameters taken over 17 months
in an urban background site located 7–14 km from the industrial area.

By using the minimum slope observed in the N versus BC plot5

(6.9×106 particles/ng BC), N was split into two components: N=N1+N2. Compo-
nent N1 shows high values during the morning and evening rush hours on working
days, and it is highly correlated with the “road-traffic intensity/wind speed” ratio.
This component (N1) correlates with NOx, the light-absorption coefficient due to
carbonaceous material and elemental carbon determined by analysis on filter. In10

contrast, it does not correlate with SO2. N1 accounts for vehicle exhaust emissions
of carbonaceous material and may also include compounds nucleating/condensing
immediately after emission. Component N2 shows a behavior well differentiated from
that of N1. It is correlated with SO2 and accounts for new particle formation due to
nucleation and rapid particle growth to detectable sizes (≥2.5 nm). Every day, the15

highest N2 concentrations were recorded during the 11–17 h period, when the sea
breeze blowing inland resulted in simultaneous increases in wind speed and in the
concentrations of N2, SO2 and O3. This behavior is attributed to new particle formation
in the inland sea breeze airflow due to photo-oxidation of gaseous aerosol precursors
and the subsequent nucleation/condensation of oxidized vapors, with SO2 being a key20

component. In wintertime, an additional secondary N2 maximum was observed during
the morning rush hours, with this being attributed to vehicle exhaust emissions con-
taining sulfur compounds. During the morning rush hours, when ultrafine particles are
attributed to vehicle exhaust emissions and about 27 000 cm−3 are typically observed,
the contribution of N1 and N2 accounted for 35% and 65% of N, respectively. In25

the 11–17 h period, when about 39 000 cm−3 are typically observed, the contribution
of N2 accounted for 80% of N, with these (N2) particles being attributed to new
particle formation in sulfur-rich air masses. These results evidence how industrial SO2
emissions may result in ultrafine particle pollution several kilometers downwind of the
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emission source. Moreover, the contributions of these emissions are frequently much
higher than those from vehicle exhausts.

The daily cycles of “new particle formation” during the period when the sea breeze
is blowing inland described here, have recently been observed in other coastal cities
located in the southern part of the European Union, such as Santa Cruz de Tenerife5

and Barcelona (Rodŕıguez et al., 2008; Pérez et al., 2010). The overall observations
suggest that new particle formation seems to be favored in the inland sea breeze air-
flow. Moreover, new particle formation rates are enhanced under high emission rates
of gaseous aerosol precursors. The fact that the N/BC ratios in Huelva during the pe-
riod when the sea breeze is blowing inland (N/BC: 50–100 106 particles/ng BC) are10

much higher than those observed in Santa Cruz de Tenerife and Barcelona (N/BC: 15–
25×106 particles/ng BC in both cities) is attributed to the much higher emission rates
of aerosol precursors in this highly industrialized region. These observations contrast
with those made in Central – Northern Europe, where ultrafine particles in urban air are
mostly attributed to vehicle exhaust emissions, with new particle formation in urban air15

being observed during some summer periods (e.g., Wehner and Wiedensohler, 2003).
Finally, it is also interesting to highlight that the method used here to segregate

the particle number into components N1 and N2 offers great potential for forthcoming
source apportionment studies and for assessing air quality and human health protec-
tion.20
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Table 1. Values of the slopes S1 and S2 obtained with the methodology described by Rodŕıguez
and Cuevas (2007). S1 and S2 are expressed as 106 particles/ng BC.

Period S1 S2

Daily 0–23 h 4.70 356.60
Night 0–5 h 6.78 350.60
Morning 6–9 h 6.90 148.40
Mid morning to afternoon 11–17 h 66.30 356.60
Evening 18–23 h 4.70 23.16
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Table 2. Factor loading of the Principal Components Analysis (followed by a varimax rota-
tion) obtained with hourly data in the morning (6–9 h) and noon-afternoon (11–17 h) in summer
(June–September 2008) and winter periods (January–March 2009). Factor loadings with ab-
solute values higher than 0.5 are in bold. RAD: Solar radiation; VEHICLES/WS: Number of
vehicles/hour. #NI: variable non included in this example.

MORNING WINTER SUMMER
PC1 PC2 PC1 PC2

vehicle vehicle vehicle vehicle
exahust-1 exahust-2 exahust-1 exahust-2

N1 0.941 0.002 0.939 0.077
N2 0.268 0.622 0.266 0.704
NOx 0.864 0.308 0.908 0.061
SO2 0.156 0.764 −0.156 0.806
RAD −0.064 0.811 −0.286 0.724
O3 #NI #NI #NI #NI
VEHICLES/WS 0.740 0.031 0.681 −0.124
PM10 0.665 0.190 0.830 −0.149
T #NI #NI #NI #NI
HR #NI #NI #NI #NI
var, % 39 25 48 23

NOON-AFTERNOON WINTER SUMMER
PC1 PC2 PC3 PC1 PC2 PC3

industrial+ photochemistry vehicle industrial+ vehicle urban plume+
ships+ exahust-1 ships exhaust-1 O3 formation

city plumes

N1 0.597 −0.080 0.645 0.024 0.634 0.597
N2 0.648 0.083 −0.107 0.911 0.075 0.012
NOx 0.632 −0.017 0.598 0.444 −0.071 0.752
SO2 0.712 0.183 0.029 0.878 −0.102 0.048
RAD −0.076 0.795 −0.012 0.209 -0.550 0.127
O3 0.241 0.714 −0.378 −0.141 −0.182 0.831
VEHICLES/WS −0.145 0.008 0.868 0.120 0.839 −0.174
PM10 0.789 0.096 0.073 0.441 0.528 0.369
T 0.487 0.739 0.083 #NI #NI #NI
HR −0.070 −0.853 −0.079 #NI #NI #NI
var, % 26 25 17 26 22 22
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Table 3. Mean number concentrations and contributions of N1 and N2 in different periods
during the whole study period, in winter and in summer.

N N1 N2 N1 N2
cm−3 cm−3 cm−3 % %

Summer 2008
Night 0–5 h 8582 3660 4922 42 58
Morning 6–9 h 16228 5248 10979 35 65
Afternoon 10–15 h 34686 3299 31387 19 81
Evening 18–23 h 11175 5203 5972 48 52
All day 0–23 h 17185 4183 13002 36 64

Winter 2009
Night 0–5 h 15912 4915 10997 38 62
Morning 6–9 h 38734 9906 28828 34 66
Afternoon 10–15 h 40639 4722 35917 22 78
Evening 18–23 h 20286 10303 9983 50 50
All day 0–23 h 28979 7088 21504 36 64

Summer 2009
Night 0–5 h 11542 4890 6652 46 54
Morning 6–9 h 26688 7262 19069 36 64
Afternoon 10–15 h 41220 3634 36698 20 80
Evening 18–23 h 11173 4950 6233 49 51
All day 0–23 h 21558 4874 16263 38 62
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Fig. 1. Map of Huelva and the surroundings. Green lines indicate main roads and motorways
around Huelva city. The two industrial areas (Punta del Sebo and Nuevo Puerto) of Huelva are
highlighted.
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Fig. 2. (A) absorption coefficient σap versus EC concentrations in PM10 particles, (B) BC in
PM10 versus BC PM2.5.
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Fig. 3. Hourly average values of particles (N and BC) and gaseous pollutant (NOx and SO2)
concentrations, and of road-traffic intensity (number of vehicles/hour), the road-traffic inten-
sity/wind speed ratio, of the N/BC ratio and solar radiation, for every day of the week.
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Fig. 6. Hourly mean values of N1 and N2 particles and of NOx and SO2 concentrations during
the summer morning (6–9 h), summer noon-afternoon and winter noon-afternoon (11–17 h) as
functions of wind direction.
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Fig. 7. Hourly average values of N1, N2, NOx, SO2 and O3 concentrations, of wind speed and
direction and of solar radiation (SR) in Huelva in winter and summer.
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Fig. 8. Concentrations of N1 and N2 particles versus NOx and SO2 during the morning
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in 25 µg NOx/m3 interval widths (0–25, 25–50, . . . ) and every 1 µg SO2/m3 interval width (0–1,
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Fig. 9. Hourly average values of total number concentration (N=N1+N2) classified from the
highest (100th) to the lowest (0th) value. The contributions of N1 (black) and N2 (grey) to N, in
absolute (cm−3; A and D) and relative (%; B and E) concentrations, are highlighted. The SO2
concentrations associated with the decreasing N values (from 100th to 0th) are plotted (C and
F).
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